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1 Goal

The purpose of this document is to set a reference for generating artificial time
series simulating stellar power spectrum.

2 Background

2.1 Methodology

The generation of time series is based upon the formalism developed for digital
electronic processing. For instance, it is well known that for reconstructing a
given signal in time, the minimum sampling frequency is given by the spectral
content that we wish to recover. For example, let’s assume that the maximum
frequency i$ Vpaz, the sampling time corresponding is 1/2/Vpas, or the inverse
of the Nyquist frequency (=2vmqz). Other technical considerations such as
aliasing, may come into play but we leave that to the digital-reconstruction-
signal expert, or to the next version of the document.

When the Nyquist frequency is known, the number of points in the time series
will define the frequency resolution from which we can generate the sampled
spectrum. So for reconstructing a signal, it is not needed (it is superfluous. . .),
to generate a highly resolved spectrum (corresponding to a long time series)
when the time series itself i1s much shorter. The reconstruction will not be
better.

2.2 Convention of Parseval’s theorem

This is basically a theorem addressing energy conservation. Typically, projecting
a function of time into an expansion of orthogonal function of time (sine and
cosine) will not modify the energy (or the norm) of this function.
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where p is the spectral density power of the process (in ppm?/uHz for example)
and o 1s the root mean square of the process in time.
For instance for white noise, we can write:

PyAv = o2 (2)

where Py is the power spectra density of the white noise (assumed to be in-
dependent of the observation), Av is the bandwidth over which this random
process is observed and o is the standard deviation of the random process in
time.

In the same spirit, for a sine wave we have that the energy of the wave is
given by: ., . .,
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The left hand side of the equation represents the sum of the 2 terms that appear
in the positive and negative part of the power spectrum, while the right hand
side is just the expression of the energy of the wave (or the square of the rms
amplitude of the wave).

Now if we assume a lorentzian profile for a p mode peaking at A ppm?/uHz
and a FWHM of T then the integrated power is P = 2 x wAT' /2. The factor 2
in front comes from the fact that we need to take into account the negative and
positive side of the spectrum.

2.3 Mode amplitude in the literature

The theoretical mode amplitude computed by Houdek (1999) is the rms velocity
or intensity amplitude derived from the energy in the mode. Therefore the peak
amplitude in the power spectrum can be derived from the rms amplitude using
Parseval’s theorem and we have:

A=V, /)T (4)

This is assuming that the profile is lorentzian. It should be noted that the Vs
is usually derived from just A x T' and the 7 seems to be forgotten...unless I
made a mistake. To be discussed and verified.

3 Recipe for time series generation

Here are the steps needed for generating a time series obeying a prescribed
power spectrum:

e Assume a Nyquist frequency (vmqz) or a sampling time (At = 1/Vpaz)-

e Assume a length for the time series or the number of points in the power
spectrum (NV)



e The power spectrum is derived from whatever 1s known or assumed about
the instrument or the star. The units of choice here are ppm?/uHz

e Generate the power spectrum for half the number of points (N/2).

e Multiply the spectral density by the size of the frequency bin (1/N/At)
expressed in pHz if this is the unit of choice. This takes into account the
length of the time series.

e Take the square root of the power to get the amplitude

e Multiply the amplitude spectrum by a complex random variable with each
component having a normal distribution where the real (or imaginary
part) has a mean of 0 and an rms of 0.5. The real and imaginary parts
are independent of each other.

e The amplitude spectrum now obtained needs to be symmetrized because
the time series is real, i.e. F(—v) = F*(v). We get the final Fourier
spectrum.

e Invert the Fourier spectrum

e Check that the imaginary part is indeed negligible compared to the real
part.

The final check 1s done by comparing the results given by Parceval’s theorem.
Let’s assume that a noise of 1 ppm?/uHz has been generated over a bandwidth
of 16666 puHz (1 over 60 s). The expected rms value of the corresponding time
series should be /1 x 16666=129 ppm. So if A = T' = 1, then the rms is

VT=1.7T ppm

4 The Corot noise level

It does make sense to relate the 0.6 ppm in 5 days given in the Corot literature to
‘real” amplitude in the time series. The reference document is ‘Corot: scientific
program and specifications, March 1998’

The reference document mentions a signal-to-noise ratio of 15 as a baseline
for reaching a frequency precision close to what would be obtained with a large
signal-to-noise ratio (say 100). The signal-to-noise ratio of 15 combined with
a typical solar-like amplitude of 2.5 ppm gives a noise level to be reached in 5
days (typical solar-like mode lifetime) of 0.18 ppm?/uHz, The typical noise is
therefore in a 5-day frequency bin 0.64 ppm (0.18 x 2.3).

Now what does it mean for a mode? The peak amplitude in the power
spectrum is 0.18 x 15=2.7 ppm?/uHz. Then the total power of this mode with
a 5-day lifetime is 7 x 2.7 x 2.3 = 19.5 ppm?, or 4.4 ppm in the time series. This
latter number is nothing less but the ‘usually quoted amplitude of the mode’



time the square root of humble 7 (4.4=2.5 x+/7). Hope this clarify the situation
now.

5 A remark...

Please bear with me as this report was written under the influence of a flu, an
insomnia, an amnesia and other neurotic behaviours.



